Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 465: 133466, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219583

RESUMO

Plant autotoxicity is considered to be one of the important causes of continuous cropping obstacles in modern agriculture, which accumulates a lot of allelochemicals and xenobiotics and is difficult to solve effectively. To overcome tobacco continuous obstacles, a strain Pigmentiphaga kullae CHJ604 isolated from the environment can effectively degrade these compounds in this study. CHJ604 strain can degrade 11 types of autotoxicity allelochemicals and xenobiotics (1646.22 µg/kg) accumulated in the soil of ten-years continuous cropping of tobacco. The 11 allelochemicals and xenobiotics significantly reduced Germination Percentage (GP), Germination Index (GI), and Mean Germination Time (MGT) of tobacco seeds, and inhibited the development of leaves, stems, and roots. These negative disturbances can be eliminated by CHJ604 strain. The degradation pathways of 11 allelochemicals and xenobiotics were obtained by whole genome sequence and annotation of CHJ604 strain. The heterologous expression of a terephthalate 1,2-dioxygenase can catalyze 4-hydroxybenzoic acid, 4-hydroxy-3-methoxybenzoic acid, 4-hydroxybenzaldehyde, and 4-hydroxy-3-methoxy-benzaldehyde, respectively. The phthalate 4,5-dioxygenase can catalyze phthalic acid, diisobutyl phthalate, and dibutyl phthalate. These two enzymes are conducive to the simultaneous degradation of multiple allelochemicals and xenobiotics by strain CHJ604. This study provides new insights into the biodegradation of autotoxicity allelochemicals and xenobiotics as it is the first to describe a degrading bacterium of 11 types of allelochemicals and xenobiotics and their great potential in improving tobacco continuous obstacles.


Assuntos
Alcaligenaceae , Xenobióticos , Feromônios/metabolismo , Alcaligenaceae/metabolismo , Solo
2.
Appl Environ Microbiol ; 88(18): e0118222, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36036586

RESUMO

Synergistic regulation of the expression of various genes in a catabolic pathway is crucial for the degradation, survival, and adaptation of microorganisms in polluted environments. However, how a single regulator accurately regulates and controls differential transcriptions of various catabolic genes to ensure metabolic safety remains largely unknown. Here, a LysR-type transcriptional regulator (LTTR), OdcR, encoded by the regulator gene odcR, was confirmed to be essential for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism and simultaneously activated the transcriptions of a gene with unknown function, orf419, and three genes, odcA, odcB, and odcC, involved in the DBHB catabolism in Pigmentiphaga sp. strain H8. OdcB further metabolized the highly toxic intermediate 2,6-dibromohydroquinone, which was produced from DBHB by OdcA. The upregulated transcriptional level of odcB was 7- to 9-fold higher than that of orf419, odcA, or odcC in response to DBHB. Through an electrophoretic mobility shift assay and DNase I footprinting assay, DBHB was found to be the effector and essential for OdcR binding to all four promoters of orf419, odcA, odcB, and odcC. A single nucleotide mutation in the regulatory binding site (RBS) of the promoter of odcB (TAT-N11-ATG), compared to those of odcA/orf419 (CAT-N11-ATG) and odcC (CAT-N11-ATT), was identified and shown to enable the significantly higher transcription of odcB. The precise regulation of these genes by OdcR via a single nucleotide mutation in the promoter avoided the accumulation of 2,6-dibromohydroquinone, ensuring the metabolic safety of DBHB. IMPORTANCE Prokaryotes use various mechanisms, including improvement of the activity of detoxification enzymes, to cope with toxic intermediates produced during catabolism. However, studies on how bacteria accurately regulate differential transcriptions of various catabolic genes via a single regulator to ensure metabolic safety are scarce. This study revealed a LysR-type transcriptional activator, OdcR, which strongly activated odcB transcription for the detoxification of the toxic intermediate 2,6-dibromohydroquinone and slightly activated the transcriptions of other genes (orf419, odcA, and odcC) for 3,5-dibromo-4-hydroxybenozate (DBHB) catabolism in Pigmentiphaga sp. strain H8. Interestingly, the differential transcription/expression of the four genes, which ensured the metabolic safety of DBHB in cells, was determined by a single nucleotide mutation in the regulatory binding sites of the four promoters. This study describes a new and ingenious regulatory mode of ensuring metabolic safety in bacteria, expanding our understanding of synergistic transcriptional regulation in prokaryotes.


Assuntos
Alcaligenaceae , Regulação Bacteriana da Expressão Gênica , Alcaligenaceae/metabolismo , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/metabolismo , Mutação , Nucleotídeos/genética
3.
Infect Genet Evol ; 85: 104513, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860988

RESUMO

Carbapenemase-producing Alcaligenes species has been described in only few studies, with none so far from the African continent. Here, we report the whole genome sequence of Peanalcaligenes suwonensis bearing blaVIM-5 metallo-ß-lactamase and first detection of carbapenemase producing Alcaligenes faecalis isolated from patients attending tertiary healthcare facilities in Nigeria. The isolates were identified by MALDI-TOF Mass Spectrometry. Antibiotic susceptibility assay, modified Carba NP test and genomic investigation revealed that two isolates of Alcaligenes faecalis and an isolate of Paenalcaligenes suwonensis harboured blaVIM-5 gene. The genome sequence analysis of the P. suwonensis 191B isolate, responsible for acute gastroenteritis, reveal the presence of 18 antibiotic resistance genes coding for resistance to five different classes of antibiotics. Three of the genes (blaOXA-368, blaCARB-4 and blaVIM-5) codes for resistance to ß-lactam antibiotics. To our best knowledge, we describe here the first genome sequence of P. suwonensis species and the first detection of class B carbapenemase blaVIM-5 in a clinical isolate of P. suwonensis species and Alcaligenes faecalis in Nigeria. The finding of this study is of concern, as lateral dissemination of the genes into clinically important Gram-negative pathogens is highly likely.


Assuntos
Alcaligenaceae/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Gastroenterite/tratamento farmacológico , Gastroenterite/microbiologia , Gastroenterite/fisiopatologia , beta-Lactamases/genética , Alcaligenaceae/metabolismo , Alcaligenes faecalis/efeitos dos fármacos , Alcaligenes faecalis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Variação Genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Nigéria , Sequenciamento Completo do Genoma , beta-Lactamases/metabolismo
4.
J Microbiol ; 58(2): 99-104, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993985

RESUMO

An obligately anaerobic, Gram-stain-negative, non-motile, non-spore-forming, and coccobacilli-shaped bacterial strain, designated KGMB03119T, was isolated from human faeces from a Korean. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the genus Sutterella and most closely related to Sutterlla wadsworthensis KCTC 15691T (96.8% 16S rRNA gene sequence similarity). The DNA G + C content of strain KGMB03119T was 58.3 mol% as determined from its whole genome sequence. Strain KGMB03119T was asaccharolytic, catalase-positive, oxidase- and urease-negative. Furthermore, the isolate was positive for alkaline phosphatase, leucine arylamidase, acid phosphatase, arginine arylamidase, alanine arylamidase, and glycine arylamidase. The major cellular fatty acids (> 10%) of the isolate were C18:1ω9c and C16:0. Methylmenaquinone-5 (MMK-5, 100%) was the predominant isoprenoid quinone in the isolate. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain KGMB03119T represents a novel species, for which the name Sutterella faecalis sp. nov. is proposed. The type strain is KGMB03119T (= KCTC 15823T = NBRC 114254T).


Assuntos
Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Fezes/microbiologia , Alcaligenaceae/genética , Alcaligenaceae/metabolismo , Classificação , DNA Bacteriano/genética , Microbioma Gastrointestinal , Humanos , Filogenia , RNA Ribossômico 16S/genética
5.
Microbiology (Reading) ; 166(4): 386-397, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31999239

RESUMO

Chemolithotrophic sulfur oxidation represents a significant part of the biogeochemical cycling of this element. Due to its long evolutionary history, this ancient metabolism is well known for its extensive mechanistic and phylogenetic diversification across a diverse taxonomic spectrum. Here we carried out whole-genome sequencing and analysis of a new betaproteobacterial isolate, Pusillimonas ginsengisoli SBSA, which is found to oxidize thiosulfate via the formation of tetrathionate as an intermediate. The 4.7 Mb SBSA genome was found to encompass a soxCDYZAXOB operon, plus single thiosulfate dehydrogenase (tsdA) and sulfite : acceptor oxidoreductase (sorAB) genes. Recombination-based knockout of tsdA revealed that the entire thiosulfate is first converted to tetrathionate by the activity of thiosulfate dehydrogenase (TsdA) and the Sox pathway is not functional in this bacterium despite the presence of all necessary sox genes. The ∆soxYZ and ∆soxXA knockout mutants exhibited a wild-type-like phenotype for thiosulfate/tetrathionate oxidation, whereas ∆soxB, ∆soxCD and soxO::KanR mutants only oxidized thiosulfate up to tetrathionate intermediate and had complete impairment in tetrathionate oxidation. The substrate-dependent O2 consumption rate of whole cells and the sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, indicated that glutathione plays a key role in SBSA tetrathionate oxidation. The present findings collectively indicate that the potential glutathione : tetrathionate coupling in P. ginsengisoli involves a novel enzymatic component, which is different from the dual-functional thiol dehydrotransferase (ThdT), while subsequent oxidation of the sulfur intermediates produced (e.g. glutathione : sulfodisulfane molecules) may proceed via the iterative action of soxBCD .


Assuntos
Alcaligenaceae/metabolismo , Crescimento Quimioautotrófico/genética , Enxofre/metabolismo , Alcaligenaceae/genética , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Glutationa/metabolismo , Mutação , Oxirredução , Oxirredutases/genética , Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfitos/metabolismo , Ácido Tetratiônico/metabolismo , Tiossulfatos/metabolismo
6.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31924619

RESUMO

Acetamiprid, a chloronicotinyl neonicotinoid insecticide, is among the most commonly used insecticides worldwide, and its environmental fate has caused considerable concern. The compound 1-(6-chloropyridin-3-yl)-N-methylmethanamine (IM 1-4) has been reported to be the main intermediate during acetamiprid catabolism in microorganisms, honeybees, and spinach. However, the molecular mechanism underlying the hydrolysis of acetamiprid to IM 1-4 has not yet been elucidated. In this study, a novel amidase (AceAB) that initially hydrolyzes the C-N bond of acetamiprid to generate IM 1-4 was purified and characterized from the acetamiprid-degrading strain Pigmentiphaga sp. strain D-2. Based on peptide profiling of the purified AceAB and the draft genome sequence of strain D-2, aceA (372 bp) and aceB (2,295 bp), encoding the α and ß subunits of AceAB, respectively, were cloned and found to be necessary for acetamiprid hydrolysis in strain D-2. The characteristics of AceAB were also systematically investigated. Though AceA and AceB showed 35% to 56% identity to the α and ß subunits of the N,N-dimethylformamidase from Paracoccus aminophilus, AceAB was specific for the hydrolysis of acetamiprid and showed no activities to N,N-dimethylformamide or its structural analogs.IMPORTANCE Acetamiprid, among the top neonicotinoid insecticides used worldwide, is one of the most important commercial insecticides. Due to its extensive use, the environmental fate of acetamiprid, especially its microbial degradation, has caused considerable concern. Although the catabolic pathways of acetamiprid in microorganisms have been extensively studied, the molecular mechanisms underlying acetamiprid biodegradation (except for a nitrile hydratase) remain largely unknown, and the enzyme responsible for the biotransformation of acetamiprid into its main intermediate, IM 1-4, have not yet been elucidated. The amidase AceAB and its encoding genes, aceA and aceB, characterized in this study, were found to be necessary and specific for the initial hydrolysis of the C-N bond of acetamiprid to generate IM 1-4 in Pigmentiphaga sp. strain D-2. The finding of the novel amidase AceAB will greatly enhance our understanding of the microbial catabolism of the widely used insecticide acetamiprid at the molecular level.


Assuntos
Alcaligenaceae/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Inseticidas/metabolismo , Neonicotinoides/metabolismo , Hidrólise
7.
Bull Environ Contam Toxicol ; 103(6): 808-813, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31602500

RESUMO

Certain microbes can biotransform antibiotics. Little is known about these microbes or the biotransformation processes. The objective of this study was to determine the effects of background nutrient conditions on a sulfonamide degrading culture and on its biotransformation of sulfadiazine (SDZ) with respect to transformation kinetics and transformation products. The mixed culture capable of degrading SDZ consisted primarily of three genera, Brevibacterium, Castellaniella and Leucobacter. The maximum biotransformation rate was 4.55 mg L-1 d-1 in the absence of background nutrients. Among the three background nutrient conditions tested, diluted R2A medium lead to the highest maximum SDZ biotransformation rates, followed by humic acid and glucose. 2-aminopyrimidine was the major SDZ biotransformation product under the background nutrient conditions tested, while another previously reported biotransformation product, sulfanilic acid, was further degraded by the mixed culture. The findings from this study can help improve our estimation of the fate of antibiotics in the environment.


Assuntos
Antibacterianos/metabolismo , Meios de Cultura/química , Microbiologia do Solo , Poluentes do Solo/metabolismo , Sulfadiazina/metabolismo , Actinobacteria/metabolismo , Alcaligenaceae/metabolismo , Biodegradação Ambiental , Biotransformação , Brevibacterium/metabolismo , Glucose/química , Substâncias Húmicas/análise , Cinética , Pirimidinas/química
8.
Int Microbiol ; 22(4): 461-470, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31098825

RESUMO

To date, tripartite tricarboxylate transport (TTT) systems are not well characterized in most organisms. To investigate which carbon sources are transported by the TTT system of A. mimigardefordensis DPN7T, single deletion mutants were generated lacking either completely both sets of genes encoding for these transport systems tctABCDE1 and tctABDE2 in the organism or the two genes encoding for the regulatory components of the third chosen TTT system, tctDE3. Deletion of tctABCDE1 (MIM_c39170-MIM_c39210) in Advenella mimigardefordensis strain DPN7T led to inhibition of growth of the cells with citrate indicating that TctABCDE1 is the transport system for the uptake of citrate. Because of the negative phenotype, it was concluded that this deletion cannot be substituted by other transporters encoded in the genome of strain DPN7T. A triple deletion mutant of A. mimigardefordensis lacking both complete TTT transport systems and the regulatory components of the third chosen system (ΔTctABCDE1 ΔTctABDE2 ΔTctDE3) showed a leaky growth with α-ketoglutarate in comparison with the wild type. The other investigated TTT (TctABDE3, MIM_c17190-MIM_c17220) is most probably involved in the transport of α-ketoglutarate. Additionally, thermoshift assays with TctC1 (MIM_c39190) showed a significant shift in the melting temperature of the protein in the presence of citrate whereas no shift occurred with α-ketoglutarate. A dissociation constant Kd for citrate of 41.7 µM was determined. Furthermore, alternative α-ketoglutarate transport was investigated via in silico analysis.


Assuntos
Alcaligenaceae/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Citratos/metabolismo , Alcaligenaceae/genética , Alcaligenaceae/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Transporte Biológico , Proteínas de Transporte/genética , Deleção de Genes , Óperon
9.
Microbiome ; 7(1): 16, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728080

RESUMO

BACKGROUND: Understanding microbial interactions in engineering bioprocesses is important to enhance and optimize performance outcomes and requires dissection of the multi-layer complexities of microbial communities. However, unraveling microbial interactions as well as substrates involved in complex microbial communities is a challenging task. Here, we demonstrate an integrated approach of metagenomics, metatranscriptomics, and targeted metabolite analysis to identify the substrates involved in interspecies interactions from a potential cross-feeding model community-bisphenol A (BPA)-biodegrading community, aiming to establish an identification method of microbial interactions in engineering or environmental bioprocesses. RESULTS: The community-level BPA-metabolic pathway was constructed using integrated metagenomics and targeted metabolite analyses. The dynamics of active functions and metabolism of major community members were identified using metagenomic and metatranscriptomic analyses in concert. Correlating the community BPA biodegradation performance to the individual bacterial activities enabled the discovery of substrates involved in a synergistic interaction of cross-feeding between BPA-degrading Sphingonomas species and intermediate users, Pseudomonas sp. and Pusillimonas sp. This proposed synergistic interaction was confirmed by the co-culture of a Sphingonomas sp. and Pseudomonas sp. isolates, which demonstrated enhanced BPA biodegradation compared to the isolate of Sphingonomas sp. alone. CONCLUSION: The three types of integrated meta-omics analyses effectively revealed the metabolic capability at both community-wide and individual bacterial levels. The correlation between these two levels revealed the hidden connection between apparent overall community performance and the contributions of individual community members and their interactions in a BPA-degrading microbial community. In addition, we demonstrated that using integrated multi-omics in conjunction with culture-based confirmation approach is effective to elucidate the microbial interactions affecting the performance outcome. We foresee this approach would contribute the future application and operation of environmental bioprocesses on a knowledge-based control.


Assuntos
Alcaligenaceae/metabolismo , Compostos Benzidrílicos/metabolismo , Biodegradação Ambiental , Fenóis/metabolismo , Pseudomonas/metabolismo , Sphingomonas/metabolismo , Alcaligenaceae/genética , Alcaligenaceae/isolamento & purificação , Metagenômica , Interações Microbianas/fisiologia , Microbiota/fisiologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Sphingomonas/genética , Sphingomonas/isolamento & purificação
10.
J Biol Chem ; 293(24): 9520-9529, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29716998

RESUMO

The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprenes, and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here, we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a DTT:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently, the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism (ctm) in C. defragrans and are annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB, and CtmAB in Escherichia coli demonstrated that limonene dehydrogenase activity required both subunits, each carrying a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest placing in Enzyme Nomenclature as new entry EC 1.17.99.8.


Assuntos
Alcaligenaceae/enzimologia , Proteínas de Bactérias/metabolismo , Limoneno/metabolismo , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Alcaligenaceae/química , Alcaligenaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Hidroxilação , Limoneno/química , Monoterpenos/química , Oxirredutases/química , Alinhamento de Sequência
11.
Ecotoxicol Environ Saf ; 160: 75-83, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29793204

RESUMO

The recently discovered endosulfan-degrading bacterial strains Pusillimonas sp. JW2 and Bordetella petrii NS were isolated from endosulfan-polluted water and soil environments. The optimal conditions for the growth and biodegradation activity of the strains JW2 and NS were studied in detail. In addition, the ability of the strains JW2 and NS to biodegrade endosulfan in soils during in situ bioremediation experiments was investigated. At a concentration of 2 mg of endosulfan per kilogram of soil, both JW2 and NS had positive effects on the degradation of endosulfan; JW2 degraded 100% and 91.5% of α- and ß-endosulfan, respectively, and NS degraded 95.1% and 90.3% of α- and ß-endosulfan, respectively. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of soil samples showed the successful colonization of JW2 and NS, and the toxicity of the soil decreased, as determined by single-cell gel electrophoresis (SCGE) assays of Eiseniafetida and micronucleus (MN) assays of Viciafaba root tip cells. Furthermore, the metabolic products of the bacterially degraded endosulfan from the in situ experiments were identified as endosulfan ether and lactone. This study provided potentially foundational backgrounds information for the remediation of endosulfan-contaminated soil.


Assuntos
Alcaligenaceae/metabolismo , Endossulfano/metabolismo , Inseticidas/metabolismo , Poluentes do Solo/metabolismo , Alcaligenaceae/crescimento & desenvolvimento , Alcaligenaceae/isolamento & purificação , Animais , Biodegradação Ambiental , Eletroforese em Gel de Gradiente Desnaturante , Endossulfano/análogos & derivados , Endossulfano/toxicidade , Inseticidas/toxicidade , Lactonas/metabolismo , Testes para Micronúcleos , Oligoquetos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Microbiologia do Solo , Poluentes do Solo/toxicidade , Vicia faba/efeitos dos fármacos , Vicia faba/genética
12.
Talanta ; 182: 536-543, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29501189

RESUMO

The identification of microorganisms is very important in different fields and alternative methods are necessary for a rapid and simple identification. The use of fatty acids for bacterial identification is gaining attention as phenotypic characteristics are reflective of the genotype and are more easily analyzed. In this work, gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) was used to determine bacteria fatty acid methyl esters (FAMEs), to identify and discriminate different environmental bacteria based on their fatty acid profile. Microorganisms were grown in agar and their fatty acids extracted, saponified, and esterified before analysis. Unique FAME profiles were obtained for each microorganism mainly composed of branched, cyclopropane, hydroxy, saturated, and unsaturated fatty acid methyl esters. S. maltophilia showed a higher diversity of fatty acids while Bacillus species showed higher complexity in terms of branched-chain FAMEs, with several iso and anteiso forms. 12 different bacteria genera and 15 species were successfully differentiated based on their fatty acid profiles after performing PCA and cluster analysis. Some difficult to differentiate species, such as Bacillus sp., which are genetically very similar, were differentiated with the developed method.


Assuntos
Bactérias/isolamento & purificação , Cromatografia Gasosa/métodos , Ácidos Graxos/isolamento & purificação , Água Subterrânea/microbiologia , Espectroscopia Fotoeletrônica/métodos , Aeromonadaceae/classificação , Aeromonadaceae/isolamento & purificação , Aeromonadaceae/metabolismo , Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Alcaligenaceae/metabolismo , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Análise por Conglomerados , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Comamonadaceae/metabolismo , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Ésteres , Ácidos Graxos/química , Ácidos Graxos/classificação , Moraxellaceae/classificação , Moraxellaceae/isolamento & purificação , Moraxellaceae/metabolismo , Análise de Componente Principal , Pseudomonadaceae/classificação , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/metabolismo , Vácuo , Microbiologia da Água , Xanthomonadaceae/classificação , Xanthomonadaceae/isolamento & purificação , Xanthomonadaceae/metabolismo
13.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29305508

RESUMO

The compound 3,5-dibromo-4-hydroxybenzoate (DBHB) is both anthropogenically released into and naturally produced in the environment, and its environmental fate is of great concern. Aerobic and anaerobic reductive dehalogenations are the only two reported pathways for DBHB catabolism. In this study, a new oxidative decarboxylation pathway for DBHB catabolism was identified in a DBHB-utilizing strain, Pigmentiphaga sp. strain H8. The genetic determinants underlying this pathway were elucidated based on comparative transcriptome analysis and subsequent experimental validation. A gene cluster comprising orf420 to orf426, with transcripts that were about 33- to 4,400-fold upregulated in DBHB-induced cells compared with those in uninduced cells, was suspected to be involved in DBHB catabolism. The gene odcA (orf420), which is essential for the initial catabolism of DBHB, encodes a novel NAD(P)H-dependent flavin monooxygenase that mediates the oxidative decarboxylation of DBHB to 2,6-dibromohydroquinone (2,6-DBHQ). The substrate specificity of the purified OdcA indicated that the 4-hydroxyl group and its ortho-halogen(s) are important for hydroxylation of the C-1 site carboxyl group by OdcA. 2,6-DBHQ is then ring cleaved by the dioxygenase OdcB (Orf425) to 2-bromomaleylacetate, which is finally transformed to ß-ketoadipate by the maleylacetate reductase OdcC (Orf426). These results provide a better understanding of the molecular mechanism underlying the catabolic diversity of halogenated para-hydroxybenzoates.IMPORTANCE Halogenated hydroxybenzoates (HBs), which are widely used synthetic precursors for chemical products and common metabolic intermediates from halogenated aromatics, exert considerable adverse effects on human health and ecological security. Microbial catabolism plays key roles in the dissipation of halogenated HBs in the environment. In this study, the discovery of a new catabolic pathway for 3,5-dibromo-4-hydroxybenzoate (DBHB) and clarification of the genetic determinants underlying the pathway broaden our knowledge of the catabolic diversity of halogenated HBs in microorganisms. Furthermore, the NAD(P)H-dependent flavin monooxygenase OdcA identified in Pigmentiphaga sp. strain H8 represents a novel 1-monooxygenase for halogenated para-HBs found in prokaryotes and enhances our knowledge of the decarboxylative hydroxylation of (halogenated) para-HBs.


Assuntos
Alcaligenaceae/genética , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Oxigenases de Função Mista/genética , Alcaligenaceae/enzimologia , Alcaligenaceae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Descarboxilação , Hidroxibenzoatos , Redes e Vias Metabólicas , Oxigenases de Função Mista/metabolismo , Oxirredução , Filogenia , Alinhamento de Sequência
14.
Microbiol Res ; 205: 1-7, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28942835

RESUMO

Molecular mechanisms of chemolithotrophic tetrathionate oxidation are not clearly understood. Here we used transposon(Tn5-mob)-insertion mutagenesis to search for novel tetrathionate oxidation genes in the facultatively chemolithoautotrophic betaproteobacterium Advenella kashmirensis that not only oxidizes tetrathionate, but also produces the same as an intermediate during thiosulfate oxidation. Genome-wide random insertion of Tn5-mob occurred at a frequency of one per 104 donor E. coli cells. A library of 8000 transconjugants yielded five tetrathionate-oxidation-impaired mutants, of which, the one named Ak_Tn_16 was studied here in detail. When grown chemolithoautotrophically on thiosulfate, Ak_Tn_16 converted the total thiosulfate supplied to equivalent amount of tetrathionate, exactly in the same way as the wild type. It could not, however, oxidize the intermediary tetrathionate to sulfate; Ak_Tn_16 could not also oxidize tetrathionate when it was supplied as the starting chemolithotrophic substrate. In the Ak_Tn_16 genome, Tn5-mob was found to have transposed in a novel soxO gene, located just-upstream of soxB, within the sox gene cluster. SoxO was predicted, via iterative threading assembly simulation, to be a glutathione-disulfide (GSSG) reductase. When Ak_Tn_16 was grown in tetrathionate-based chemolithoautotrophic medium supplemented with reduced glutathione (GSH) its tetrathionate-oxidation deficiency, remarkably, was ameliorated. Implications for a key role of GSH in tetrathionate oxidation are discussed in the light of other molecular evidences available for A. kashmirensis.


Assuntos
Alcaligenaceae/genética , Alcaligenaceae/metabolismo , Glutationa Redutase/genética , Oxirredução , Ácido Tetratiônico/metabolismo , Sequência de Bases , Crescimento Quimioautotrófico/genética , Crescimento Quimioautotrófico/fisiologia , Elementos de DNA Transponíveis , DNA Bacteriano , Escherichia coli/genética , Genes Bacterianos/genética , Glutationa/metabolismo , Mutagênese Insercional , Análise de Sequência , Enxofre/metabolismo , Tiossulfatos/metabolismo
15.
Mol Microbiol ; 104(6): 916-930, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28407382

RESUMO

In this study, we investigated an SBP (DctPAm ) of a tripartite ATP-independent periplasmic transport system (TRAP) in Advenella mimigardefordensis strain DPN7T . Deletion of dctPAm as well as of the two transmembrane compounds of the tripartite transporter, dctQ and dctM, impaired growth of A. mimigardefordensis strain DPN7T , if cultivated on mineral salt medium supplemented with d-glucose, d-galactose, l-arabinose, d-fucose, d-xylose or d-gluconic acid, respectively. The wild type phenotype was restored during complementation studies of A. mimigardefordensis ΔdctPAm using the broad host vector pBBR1MCS-5::dctPAm . Furthermore, an uptake assay with radiolabeled [14 C(U)]-d-glucose clearly showed that the deletion of dctPAm , dctQ and dctM, respectively, disabled the uptake of this aldoses in cells of either mutant strain. Determination of KD performing thermal shift assays showed a shift in the melting temperature of DctPAm in the presence of d-gluconic acid (KD 11.76 ± 1.3 µM) and the corresponding aldonic acids to the above-mentioned carbohydrates d-galactonate (KD 10.72 ± 1.4 µM), d-fuconic acid (KD 13.50 ± 1.6 µM) and d-xylonic acid (KD 8.44 ± 1.0 µM). The sugar (glucose) dehydrogenase activity (E.C.1.1.5.2) in the membrane fraction was shown for all relevant sugars, proving oxidation of the molecules in the periplasm, prior to transport.


Assuntos
Alcaligenaceae/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Açúcares Ácidos/metabolismo , Alcaligenaceae/genética , Proteínas de Bactérias/genética , Carboidratos , Galactose/metabolismo , Gluconatos/metabolismo , Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Periplasma/fisiologia , Propionatos/metabolismo , Análise de Sequência de DNA , Simportadores/metabolismo , Xilose/metabolismo
16.
PLoS One ; 12(3): e0174256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358882

RESUMO

2-Mercaptosuccinate (MS) and 3,3´-ditiodipropionate (DTDP) were discussed as precursor substance for production of polythioesters (PTE). Therefore, degradation of MS and DTDP was investigated in Advenella mimigardefordensis strain DPN7T, applying differential proteomic analysis, gene deletion and enzyme assays. Protein extracts of cells cultivated with MS, DTDP or 3-sulfinopropionic acid (SP) were compared with those cultivated with propionate (P) and/or succinate (S). The chaperone DnaK (ratio DTDP/P 9.2, 3SP/P 4.0, MS/S 6.1, DTDP/S 6.2) and a Do-like serine protease (DegP) were increased during utilization of all organic sulfur compounds. Furthermore, a putative bacterioferritin (locus tag MIM_c12960) showed high abundance (ratio DTDP/P 5.3, 3SP/P 3.2, MS/S 4.8, DTDP/S 3.9) and is probably involved in a thiol-specific stress response. The deletion of two genes encoding transcriptional regulators (LysR (MIM_c31370) and Xre (MIM_c31360)) in the close proximity of the relevant genes of DTDP catabolism (acdA, mdo and the genes encoding the enzymes of the methylcitric acid cycle; prpC,acnD, prpF and prpB) showed that these two regulators are essential for growth of A. mimigardefordensis strain DPN7T with DTDP and that they most probably regulate transcription of genes mandatory for this catabolic pathway. Furthermore, proteome analysis revealed a high abundance (ratio MS/S 10.9) of a hypothetical cupin-2-domain containing protein (MIM_c37420). This protein shows an amino acid sequence similarity of 60% to a newly identified MS dioxygenase from Variovorax paradoxus strain B4. Deletion of the gene and the adjacently located transcriptional regulator LysR, as well as heterologous expression of MIM_c37420, the putative mercaptosuccinate dioxygenase (Msdo) from A. mimigardefordensis, showed that this protein is the key enzyme of MS degradation in A. mimigardefordensis strain DPN7T (KM 0.2 mM, specific activity 17.1 µmol mg-1 min-1) and is controlled by LysR (MIM_c37410).


Assuntos
Alcaligenaceae/metabolismo , Compostos Orgânicos/metabolismo , Proteômica/métodos , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Propionatos/metabolismo , Proteoma/metabolismo , Software , Tiomalatos/metabolismo
17.
J Microbiol ; 55(5): 330-336, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28124782

RESUMO

White and pale yellow coloured bacteria were isolated from the riverside soil, Daejeon, South Korea, and were designated UCM-11T, UCM-F25, and UCM-80T. We found that all strains were able to reduce nitrate, and the cells were aerobic and motile. The DNA G+C contents of UCM-11T, UCM-F25, and UCM-80T were between 68.9 to 71.2 mol% and the main ubiquinone was observed as Q-8. Based on16S rRNA gene sequences, strains UCM-11T and UCM-F25 were found to closely match with Azohydromonas australica IAM 12664T (98.48-98.55%), and the strain UCM-80T was the closest match with Azohydromonas lata IAM 12599T (98.34%). The presence of summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, summed feature 8 (C18:1 ω7c and/or C18:1 ω6c) as well as twokinds of hydroxyfatty acids consisting of C10:0 3-OH and C12:0 2-OH, and branched fatty acids containing C16:0 iso and C17:0 cyclo were detected in all the strains. Phosphatidylethanolamine was a major polar lipid. DNA-DNA relatedness confirmed UCM-11T, UCM-F25 and UCM-80T as novel members of the genus Azohydromonas. Based on the morphological, physiological, biochemical and genotypic characteristics, we suggest that strains UCM-11T, UCM-F25, and UCM-80T represent novel species within the genus Azohydromonas. The names Azohydromonas riparia sp. nov., and Azohydromonas ureilytica sp. nov. are proposed for the type strains UCM-11T (=KACC 18570T =NBRC 111646T) and UCM-80T (=KACC 18576T =NBRC 111658T), respectively.


Assuntos
Alcaligenaceae/isolamento & purificação , DNA Bacteriano/genética , Microbiologia do Solo , Alcaligenaceae/química , Alcaligenaceae/genética , Alcaligenaceae/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Ribossômico , Ácidos Graxos/análise , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S , República da Coreia , Análise de Sequência de DNA
18.
J Environ Manage ; 188: 379-386, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011373

RESUMO

Diuron is a biologically active pollutant present in soil, water and sediments. It is persistent in soil, water and groundwater and slightly toxic to mammals and birds as well as moderately toxic to aquatic invertebrates. Its principal product of biodegradation, 3,4-dichloroaniline, exhibits a higher toxicity than diuron and is also persistent in the environment. On this basis, the objective of the study was to determine the potential capacity of a proposed novel diuron-degrading microbial consortium (DMC) for achieving not only diuron degradation, but its mineralisation both in solution as well as in soils with different properties. The consortium was tested in a soil solution where diuron was the only carbon source, and more than 98.8% of the diuron initially added was mineralised after only a few days. The consortium was composed of three diuron-degrading strains, Arthrobacter sulfonivorans, Variovorax soli and Advenella sp. JRO, the latter had been isolated in our laboratory from a highly contaminated industrial site. This work shows for the first time the potential capacity of a member of the genus Advenella to remediate pesticide-contaminated soils. However, neither of the three strains separately achieved mineralisation (ring-14C) of diuron in a mineral medium (MSM) with a trace nutrient solution (NS); combined in pairs, they mineralised 40% of diuron in solution, but the most relevant result was obtained in the presence of the three-member consortium, where complete diuron mineralisation was achieved after only a few days. In the presence of the investigated soils in suspension, the capacity of the consortium to mineralise diuron was evaluated, achieving mineralisation of a wide range of herbicides from 22.9 to 69.0%.


Assuntos
Alcaligenaceae/metabolismo , Arthrobacter/metabolismo , Comamonadaceae/metabolismo , Diurona/metabolismo , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Consórcios Microbianos , Microbiologia do Solo
19.
Antonie Van Leeuwenhoek ; 110(1): 125-132, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27744638

RESUMO

A polyphasic taxonomic study was carried out on strain EBR-8-1T isolated from a biofilm reactor in Korea. The cells of the strain were Gram-stain negative, non-spore-forming, non-motile, and short rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of this strain with Betaproteobacteria, which showed high pairwise sequence similarities with Pusillimonas noertemannii BN9T (99.1 %), Pusillimonas soli MJ07T (97.3 %), Pusillimonas ginsengisoli DCY25T (97.2 %), and Pusillimonas harenae B201T (96.8 %). The phylogenetic analysis based on 16S rRNA gene sequences showed that the strain formed a clear phylogenetic lineage within the genus Pusillimonas. The major fatty acids were identified as C16:0, C17:0 cyclo and C19:0 cyclo ω8c. The major cellular polar lipids were identified as phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and an unidentified aminolipid. The respiratory quinone was identified as Q-8 and the genomic DNA G+C content was determined to be 63.3 mol%. On the basis of polyphasic evidence, it is proposed that strain EBR-8-1T should be placed in a new species, Pusillimonas caeni sp. nov. The type stain is EBR-8-1T (=KCTC 42353T = JCM 30463T).


Assuntos
Alcaligenaceae/isolamento & purificação , Biofilmes , Esgotos/microbiologia , Alcaligenaceae/classificação , Alcaligenaceae/genética , Alcaligenaceae/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , República da Coreia
20.
Appl Environ Microbiol ; 82(14): 4169-4179, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208123

RESUMO

UNLABELLED: 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein(-1) for CDHB, with Km and kcat values of 0.29 mM and 8,500 s(-1), respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg(2+), Ni(2+), Ca(2+), or Zn(2+) Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137 The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE: 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives.


Assuntos
Alcaligenaceae/enzimologia , Alcaligenaceae/metabolismo , Benzoxazóis/metabolismo , Ativadores de Enzimas/metabolismo , Hidrolases/metabolismo , Redes e Vias Metabólicas/genética , Metais/metabolismo , Alcaligenaceae/genética , Biotransformação , Clonagem Molecular , Sequência Conservada , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Hidrolases/química , Hidrolases/genética , Hidrolases/isolamento & purificação , Cinética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...